Copied to
clipboard

G = C42.259C23order 128 = 27

120th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.259C23, C4⋊C849C22, (C4×C8)⋊53C22, C24.77(C2×C4), C8⋊C455C22, (C4×M4(2))⋊30C2, (C2×C4).640C24, C42.203(C2×C4), (C2×C8).398C23, C4⋊M4(2)⋊32C2, C42⋊C2.29C4, C23.99(C22×C4), C4.66(C42⋊C2), C22⋊C8.137C22, C2.10(Q8○M4(2)), C24.4C4.23C2, (C22×C4).911C23, (C23×C4).522C22, C22.168(C23×C4), (C2×C42).754C22, C42.7C2219C2, C42⋊C2.289C22, C22.38(C42⋊C2), (C2×M4(2)).342C22, (C2×C4⋊C4).68C4, C4⋊C4.216(C2×C4), C4.291(C2×C4○D4), (C2×C22⋊C4).45C4, C22⋊C4.67(C2×C4), (C2×C4).678(C4○D4), (C2×C4).256(C22×C4), (C22×C4).334(C2×C4), C2.40(C2×C42⋊C2), (C2×C42⋊C2).57C2, SmallGroup(128,1653)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.259C23
C1C2C4C2×C4C22×C4C2×C42C2×C42⋊C2 — C42.259C23
C1C22 — C42.259C23
C1C2×C4 — C42.259C23
C1C2C2C2×C4 — C42.259C23

Generators and relations for C42.259C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1b2, dad=ab2, ae=ea, bc=cb, bd=db, be=eb, dcd=a2b2c, ece=b2c, de=ed >

Subgroups: 284 in 196 conjugacy classes, 132 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C2×M4(2), C23×C4, C4×M4(2), C24.4C4, C4⋊M4(2), C42.7C22, C2×C42⋊C2, C42.259C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C42⋊C2, C23×C4, C2×C4○D4, C2×C42⋊C2, Q8○M4(2), C42.259C23

Smallest permutation representation of C42.259C23
On 32 points
Generators in S32
(1 19 27 12)(2 9 28 24)(3 21 29 14)(4 11 30 18)(5 23 31 16)(6 13 32 20)(7 17 25 10)(8 15 26 22)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 32)(4 26)(6 28)(8 30)(9 24)(10 14)(11 18)(12 16)(13 20)(15 22)(17 21)(19 23)
(1 31)(2 28)(3 25)(4 30)(5 27)(6 32)(7 29)(8 26)(9 24)(10 21)(11 18)(12 23)(13 20)(14 17)(15 22)(16 19)

G:=sub<Sym(32)| (1,19,27,12)(2,9,28,24)(3,21,29,14)(4,11,30,18)(5,23,31,16)(6,13,32,20)(7,17,25,10)(8,15,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)>;

G:=Group( (1,19,27,12)(2,9,28,24)(3,21,29,14)(4,11,30,18)(5,23,31,16)(6,13,32,20)(7,17,25,10)(8,15,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19) );

G=PermutationGroup([[(1,19,27,12),(2,9,28,24),(3,21,29,14),(4,11,30,18),(5,23,31,16),(6,13,32,20),(7,17,25,10),(8,15,26,22)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,32),(4,26),(6,28),(8,30),(9,24),(10,14),(11,18),(12,16),(13,20),(15,22),(17,21),(19,23)], [(1,31),(2,28),(3,25),(4,30),(5,27),(6,32),(7,29),(8,26),(9,24),(10,21),(11,18),(12,23),(13,20),(14,17),(15,22),(16,19)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O···4T8A···8P
order1222222244444···44···48···8
size1111224411112···24···44···4

44 irreducible representations

dim11111111124
type++++++
imageC1C2C2C2C2C2C4C4C4C4○D4Q8○M4(2)
kernelC42.259C23C4×M4(2)C24.4C4C4⋊M4(2)C42.7C22C2×C42⋊C2C2×C22⋊C4C2×C4⋊C4C42⋊C2C2×C4C2
# reps12228144884

Matrix representation of C42.259C23 in GL6(𝔽17)

1300000
1340000
0001600
001000
0000016
000010
,
100000
010000
004000
000400
000040
000004
,
490000
4130000
000010
000001
004000
000400
,
100000
1160000
001000
0001600
000010
0000016
,
100000
010000
001000
000100
0000160
0000016

G:=sub<GL(6,GF(17))| [13,13,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,4,0,0,0,0,9,13,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16] >;

C42.259C23 in GAP, Magma, Sage, TeX

C_4^2._{259}C_2^3
% in TeX

G:=Group("C4^2.259C2^3");
// GroupNames label

G:=SmallGroup(128,1653);
// by ID

G=gap.SmallGroup(128,1653);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,723,100,2019,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*b^2*c,e*c*e=b^2*c,d*e=e*d>;
// generators/relations

׿
×
𝔽